Research results on Hardware and Software Partitioning.
http://citeseer.nj.nec.com/context/135405/0
The url above has links to a number of papers. The first link
 is to a paper on the role of FPGAs in reprogrammable systems – this could prove as good background FPGA information. On that page there are a lot of links to papers about FPGAs and various aspects of them. This website could provide a lot of useful information.

Annoyingly the paper “A Case Study on Hardware/Software Partitioning
 - Jantsch, Ellervee et al. – 1994” is not in their paper database, nor does it appear to be on the web. However, a paper by the same authors covers one of our approaches. “A Software Oriented Approach to Hardware/Software Codesign
 (1994)” uses hardware similar to ours (they use a sparc station with an FPGA card) and has a “design flow” diagram almost identical to the one fleshed out in the first meeting with Green and Edwards.

They use an extended version of GNU CC to automatically partition the code. Code is selected as a candidate for HW implementation (HWI) on the following criteria:

• iff it does not include floating point operations or calls to external library and operating system functions
and

• if it is an inner loop or leaf function

• or it includes only loops and calls to functions that are candidate regions themselves.
· This covers the vast majority of suitable code for HWI. See the pdf at the above site for more information, pages 4 and 5. Pages 8 and 9 cover experiments and results of the techniques they use. Their approach seems to be better than all the others they mention, but this is to be expected. Their reasons are:

· Doesn’t compromise system complexity. Hardware based approaches have to use HardwareC or similar to write the application in. H-C is only a subset of C, therefore some of the commands are lost restricting system complexity.

· Their method of HW candidate code choosing means that

· They cut out most of the irrelevant bits of code and don’t waste time ploughing through the entire program.

· Candidates are more likely to be chosen due to their suitability for HW implementation

· It runs through an execution of the code, not through a simulator. Simulators can be slow, therefore testing large, complex programs with lots of data can be time consuming.

Looking at a different paper, one which uses a software simulation approach, suggests a different way (A Software-Hardware Cosynthesis Approach to Digital System Simulation
). They use a simulator to test different FPGA configurations. In their appraoch the application is split into blocks and then blocks are chosen to be moved into hardware using the following rules:

1. t com t SW 

2. t SW t HW t com 

3. t HW t com t SW t com 
(t com) is communication time, (t SW) is software execution time and (t HW) is hardware execution time.

Those blocks that fit into group 1 are left in software and not considered further. Those in group 2 will be put in hardware pending speedup tests. Those in 3 may be put in, but their suitability depends on which other blocks are in hardware.

Then the second stage swaps blocks in group 2 out of hardware and places blocks from group 3 into the space left. The best combination is then chosen as the new start position and the second stage iterates. This makes the configuration tend towards the best optimization.

� http://citeseer.nj.nec.com/hauck98roles.html

� http://citeseer.nj.nec.com/context/135405/0

� http://citeseer.nj.nec.com/jantsch94software.html

� http://citeseer.nj.nec.com/163118.html

